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The input

A bipartite graph where every vertex has a strict ranking of its neighbors.

A well-studied model used in many two-sided markets:

▶ students to schools;

▶ medical residents to hospitals.

What we seek is a matching in this graph.
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Matchings

A matching is a subset of edges such that at most one edge is incident to any vertex.

Recall that vertices have preferences.

▶ Our problem is to find an optimal matching as per vertex preferences.
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Stability

A matching M is stable if there is no edge ab such that:

b ≻a M(a) and a ≻b M(b)

(i.e., a and b prefer each other to their respective assignments in M)

▶ The red matching is stable but the blue one is not.
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Stable matchings

Do stable matchings always exist? Can we find one efficiently?

▶ Yes [Gale and Shapley, 1962].
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Stable matchings

https://medium.com/@UofCalifornia/
how-a-matchmaking-algorithm-saved-lives-2a65ac448698

▶ In assigning new doctors to hospitals around the US.

▶ In helping kidney transplant patients find a match.
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Stable matchings

Do stable matchings always exist? Can we find one efficiently?

▶ Yes [Gale and Shapley, 1962].

The Gale-Shapley algorithm: agents propose and jobs dispose — this is a very simple
and clean algorithm.
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Let us run Gale-Shapley algorithm on this instance.
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Initially both a and s propose to their top neighbor b.
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b (tentatively) accepts s’s proposal and rejects a’s proposal.
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Stable matchings

Do stable matchings always exist? Can we find one efficiently?

▶ Yes [Gale and Shapley, 1962].

The Gale-Shapley algorithm: agents propose and jobs dispose — this is a very simple
and clean algorithm.
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a has no other neighbor to propose to; we get the matching {sb}.
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Applications of stable matchings

Stable matchings are used in several problems in economics, computer science,
and operations research.

To match students to schools in New York:

▶ How Game Theory Helped Improve New York City’s High School
Application Process, New York Times, December 5, 2014.

To match students to colleges in France:

▶ Stable Matching in Practice, Claire Mathieu. ESA 2018, Keynote talk.

To match students to engineering colleges in India:

▶ Centralized admissions for engineering colleges in India, S. Baswana,
P. P. Chakrabarti, S. Chandran, Y. Kanoria, and U. Patange. INFORMS
Journal on Applied Analytics, 2018.
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Size versus Stability

All stable matchings match the same subset of vertices [Rural Hospitals Theorem].

▶ The size of a stable matching could be only half the size of a maximum matching.
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The maximum matching {ab, st} is unstable.

▶ We seek large matchings in all applications.

▶ Forbidding blocking edges constrains the size of the matching.
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Beyond stability

Drawbacks of stability:

▶ Size can be half the size of a maximum matching;

▶ Models a situation where every edge has a “veto power”.

Can we relax stability so as to cope with these issues? We want a set that:

▶ contains stability as a special case;

▶ shifts the focus from “veto power” to “collective decision”;

▶ allows for matchings of size larger than stable matchings.

⇒ Popular matchings
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Elections between pairs of matchings

Any pair of matchings can be compared via a pairwise election.

▶ the red vs blue election is a tie (so red ∼ blue).

Consider the election between the red and green matchings.

▶ the green matching loses this election, thus red ≻ green.

A popular matching is one that does not lose any election.
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Condorcet winner

Condorcet winner: A candidate who defeats every other candidate in their
head-to-head election.

30% 30% 40%

1 a b c

2 b a a

3 c c b

▶ Here a is the Condorcet winner.

▶ a ≻ b and a ≻ c. (a defeats b and a defeats c)
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Weak Condorcet winner

A weak Condorcet winner is one that is never defeated.

▶ x is a weak Condorcet winner =⇒ x ≻ y or x ∼ y for all candidates y .

However a (weak) Condorcet winner need not always exist.

33.3% 33.3% 33.3%

1 a b c

2 b c a

3 c a b

▶ Here we have: a ≻ b ≻ c ≻ a.

T. Kavitha Introduction to Popular Matchings



Weak Condorcet winner

A weak Condorcet winner is one that is never defeated.

▶ x is a weak Condorcet winner =⇒ x ≻ y or x ∼ y for all candidates y .

However a (weak) Condorcet winner need not always exist.

33.3% 33.3% 33.3%

1 a b c

2 b c a

3 c a b

▶ Here we have: a ≻ b ≻ c ≻ a.

T. Kavitha Introduction to Popular Matchings



Weak Condorcet winner

A weak Condorcet winner is one that is never defeated.

▶ x is a weak Condorcet winner =⇒ x ≻ y or x ∼ y for all candidates y .

However a (weak) Condorcet winner need not always exist.

33.3% 33.3% 33.3%

1 a b c

2 b c a

3 c a b

▶ Here we have: a ≻ b ≻ c ≻ a.

T. Kavitha Introduction to Popular Matchings



Weak Condorcet winner

A weak Condorcet winner is one that is never defeated.

▶ x is a weak Condorcet winner =⇒ x ≻ y or x ∼ y for all candidates y .

However a (weak) Condorcet winner need not always exist.

33.3% 33.3% 33.3%

1 a b c

2 b c a

3 c a b

▶ Here we have: a ≻ b ≻ c ≻ a.

T. Kavitha Introduction to Popular Matchings



Weak Condorcet winner

A weak Condorcet winner is one that is never defeated.

▶ x is a weak Condorcet winner =⇒ x ≻ y or x ∼ y for all candidates y .

However a (weak) Condorcet winner need not always exist.

33.3% 33.3% 33.3%

1 a b c

2 b c a

3 c a b

▶ Here we have: a ≻ b ≻ c ≻ a.

T. Kavitha Introduction to Popular Matchings



Weak Condorcet winner in our setting

Matching M is a weak Condorcet winner ≡ M ≻ N or M ∼ N for all matchings N.

▶ Do weak Condorcet winners always exist in our setting?

Every stable matching is a weak Condorcet winner [Gärdenfors, 1975].

Comparing a stable matching S with any matching N:

▶ u prefers N to S =⇒ N(u) has to prefer S to N;

(otherwise the edge between u and N(u) blocks S)

▶ so the number of votes for N ≤ the number of votes for S .

Matchings that are weak Condorcet winners = Popular matchings.
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Popular matchings

Properties of popular matchings:

▶ contains stability as a special case;

▶ shifts the focus from “veto power” to “collective decision”;

▶ allows for matchings of size larger than stable matchings.

Every stable matching is popular [Gärdenfors, 1975].

▶ Stable matchings are min-size popular matchings.

Is there an efficient algorithm to find a max-size popular matching?
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An interesting example

There is a popular matching of size 2 and there is also one of size 4.
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▶ But there is no popular matching of size 3 here.

▶ So the following iterative approach — have a popular matching of size i and

use this popular matching to build one of size i + 1 — will not work.
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To find a max-size popular matching

To find a max-size popular matching, can we adapt the Gale-Shapley algorithm?

▶ Stability is easy to check: no edge blocks a stable matching.

▶ Popularity requires comparing our matching with all the matchings in G .

Suppose G is our earlier example.
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Our goal is to find the matching {ab, st} of size 2 via the Gale-Shapley algorithm.

▶ This is a max-size popular matching in G .
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Our goal is to find the matching {ab, st} of size 2 via the Gale-Shapley algorithm.
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A new instance G ′

A new graph G ′ such that {ab, st} is the stable matching in G ′?

Suppose we replace every edge uv in G by the pair of edges uv and uv in G ′:

▶ that is, by two parallel edges: one red and the other blue.

The corresponding graph G ′ is:

s

a b

t

▶ Every vertex on the left prefers any red edge to any blue edge.

▶ Every vertex on the right prefers any blue edge to any red edge.
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A new instance G ′

So the graph G ′ with preferences is:

t

ba

s
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2

3

1

1

▶ The preference order of s in G is b ≻ t. Its preference order in G ′ is:

b ≻ t ≻ b ≻ t.

▶ The preference order of b in G is s ≻ a. Its preference order in G ′ is:

s ≻ a ≻ s ≻ a.
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A new instance G ′

The graph G ′ with preferences is:
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Recall the stable matching {sb} in G .

▶ In the graph G ′, neither {sb} nor {sb} is stable.

▶ The edge ab blocks the matching {sb}.
▶ The edge st blocks the matching {sb}.
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Computing a stable matching in G ′

Let us run Gale-Shapley algorithm in G ′.

t

ba

s
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4
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2

4 1

2

1

2

3

▶ Both a and s propose to b along their red edges.

▶ b prefers s’s proposal to a’s proposal.
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Computing a stable matching in G ′

Let us run Gale-Shapley algorithm in G ′.

t
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▶ So b (tentatively) accepts s’s proposal and rejects a’s proposal.

▶ Then a proposes along its next favorite edge: this is ab.
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Computing a stable matching in G ′

Let us run Gale-Shapley algorithm in G ′.

t

ba

s

1

2
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4 1
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3

▶ Observe that now b prefers a’s proposal to s’s proposal.

▶ So b (tentatively) accepts a’s proposal and rejects s’s proposal.
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Computing a stable matching in G ′

Let us run Gale-Shapley algorithm in G ′.

t

ba

s

1

2
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4 1

2

1

2

3

▶ Then s proposes along its next most favorite edge st.

▶ t (tentatively) accepts s’s proposal. This is the end of the algorithm.
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Computing a stable matching in G ′

So we get the stable matching {ab, st} in G ′.

Ignoring colors, this is the desired matching M = {ab, st} in G .

———————————————————————————————

Our algorithm in G = (A ∪ B,E )

▶ Construct the red/blue graph G ′ = (A ∪ B,E ′).

▶ Run Gale-Shapley algorithm in G ′ to compute M′.

▶ Return the corresponding matching M in G .

———————————————————————————————

Claim. M is a max-size popular matching in G .

▶ We use linear programming to prove the popularity of M.
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Analyzing our algorithm

Every popular matching admits a simple certificate of its popularity.

▶ The certificate for M is given by red/blue edge colours in the matching M′.

Let us define an edge weight function in G . For any edge ab:

wtM(ab) = votea(b,M(a)) + voteb(a,M(b)).

Here votev (u, u
′) =


1 if v prefers u to u′

−1 if v prefers u′ to u

0 otherwise.

So wtM(e) ∈ {0,±2} for any edge e.

▶ Observation. For any edge e, wtM(e) = 2 ⇐⇒ e is a blocking edge to M.
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An appropriate edge weight function

Let us augment G with self-loops:

▶ any matching ⇝ a perfect matching via self-loops.

For any self-loop uu:

let wtM(uu) = voteu(u,M(u)) =

{
0 if M(u) = u

−1 otherwise.

Observation. For any perfect matching N:

wtM(N) = # of votes for N − # of votes for M.

▶ M is popular ⇐⇒ wtM(N) ≤ 0 for any perfect matching N.

⇐⇒ any perfect matching in G with edge weights
given by wtM has weight at most 0.
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LP for max-weight perfect matching

max
∑
e

wtM(e) · xe

∑
e∈δ(u)∪{uu}

xe = 1 ∀u ∈ A ∪ B

xe ≥ 0 ∀e ∈ E ∪ {self-loops}.

M is popular ⇐⇒ the optimal value of this LP is at most 0.

Dual LP

min
∑
u

αu

αa + αb ≥ wtM(ab) ∀ ab ∈ E

αu ≥ wtM(uu) ∀ u ∈ A ∪ B.

M is popular ⇐⇒ the optimal value of the dual LP is at most 0.

T. Kavitha Introduction to Popular Matchings



LP for max-weight perfect matching

max
∑
e

wtM(e) · xe

∑
e∈δ(u)∪{uu}

xe = 1 ∀u ∈ A ∪ B

xe ≥ 0 ∀e ∈ E ∪ {self-loops}.

M is popular ⇐⇒ the optimal value of this LP is at most 0.

Dual LP

min
∑
u

αu

αa + αb ≥ wtM(ab) ∀ ab ∈ E

αu ≥ wtM(uu) ∀ u ∈ A ∪ B.

M is popular ⇐⇒ the optimal value of the dual LP is at most 0.

T. Kavitha Introduction to Popular Matchings



Dual certificate

Every stable matching S has a simple dual certificate: α⃗ = 0⃗.

▶ This is because wtS (e) ≤ 0 for all edges e.

Does M computed by our algorithm have an easy-to-describe dual certificate?

For each vertex a ∈ A:
▶ a is matched along a red edge in M′: set αa = 1.

▶ a is matched along a blue edge in M′: set αa = −1.

▶ a is unmatched in M′: set αa = 0.

For each vertex b ∈ B:
▶ b is matched along a red edge in M′: set αb = −1.

▶ b is matched along a blue edge in M′: set αb = 1.

▶ b is unmatched in M′: set αb = 0.
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Dual certificate

A useful picture:

A1

A0 B0

B1

So vertices matched along red edges are in A0 ∪ B0.

And vertices matched along blue edges are in A1 ∪ B1.

▶ Unmatched vertices of A (resp., B) are in A1 (resp., B0).

α-values were assigned as follows:

▶ αu = 1 for all u ∈ A0 ∪ B1;

▶ αu = −1 for all matched u ∈ A1 ∪ B0;

▶ αu = 0 for all unmatched u.
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Dual feasibility of α⃗

We need to show this vector α⃗ is a feasible solution to the dual LP.

Dual LP

min
∑
u

αu

αa + αb ≥ wtM(ab) ∀ ab ∈ E

αu ≥ wtM(uu) ∀ u ∈ A ∪ B.

We will also show that
∑

u∈A∪B αu = 0.

▶ This will mean the dual optimal solution is at most 0.

▶ This will prove M is a popular matching.
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Dual feasibility of α⃗

Recall that αu ∈ {0,±1}:

A1

A0 B0

B1

Observation. The constraint αu ≥ wtM(uu) holds for all vertices u.

▶ For a matched vertex u, we have αu ≥ −1 = wtM(uu).

▶ For an unmatched vertex u, we have αu = 0 = wtM(uu).

Lemma. The constraint αa + αb ≥ wtM(ab) holds for all ab ∈ E .

▶ We will use the stability of M′ in the instance G ′ to prove the lemma.

Conclusion. So α⃗ is dual-feasible.
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Optimal value of the dual LP

A1

A0 B0

B1

Every edge in M′ is a red edge or a blue edge.

▶ So αa + αb = 0 for all ab ∈ M.

▶ Since αu = 0 for all unmatched vertices,
∑

u∈A∪B αu = 0.

Thus the optimal value of the dual LP is at most 0.

▶ Hence M is a popular matching.
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Proof of the lemma

To show αa + αb ≥ wtM(ab) holds for all ab ∈ E .

Case 1. Suppose αa = αb = −1.

B1

B0

ca

A0

A1

d b

▶ So ac ∈ M′ and bd ∈ M′ for some neighbors c and d of a and b, respectively.

▶ Observe that (i) a prefers c to b and (ii) b prefers d to a.

▶ This is because a never proposed along ab.

▶ Furthermore, b rejected a’s proposal along ab.

Thus wtM(ab) = −2, hence αa + αb = −2 = wtM(ab).
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Proof of the lemma

Case 2. Suppose αa = αb = 1.

▶ Since wtM(ab) ∈ {0,±2}, we have αa + αb = 2 ≥ wtM(ab).

Case 3. Suppose αa = 1 and αb = −1.

▶ This means ac and bd are in M′ for some neighbors c and d .

▶ M′ is stable in G ′ ⇒ ab does not block M′.

Thus wtM(ab) ≤ 0, hence αa + αb = 0 ≥ wtM(ab).

Case 4. Suppose αa = −1 and αb = 1.

▶ This means ac and bd are in M′ for some neighbors c and d .

▶ M′ is stable in G ′ ⇒ ab does not block M′.

Thus wtM(ab) ≤ 0, hence αa + αb = 0 ≥ wtM(ab).
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Proof of the lemma

Case 5. Suppose αa = 0.

Since M′ is stable in G ′, ab does not block M′.

▶ This means bd ∈ M′ for some neighbor d that b prefers to a.

Thus αb = 1, hence αa + αb = 1 ≥ 0 = wtM(ab).

An analogous analysis holds when αb = 0.

▶ Then αa = 0 and αb = 1, so αa + αb = 1 ≥ 0 = wtM(ab).

This finishes the proof of the lemma.

A useful observation

For any edge ab incident to an unmatched vertex (either a or b is unmatched):

▶ we have αa + αb = 1 > 0 = wtM(ab), thus the edge ab is slack.
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The dual LP and slack edges

min
∑
u

αu

αa + αb ≥ wtM(ab) ∀ ab ∈ E

αu ≥ wtM(uu) ∀ u ∈ A ∪ B.

Recall that α⃗ is an optimal solution to the dual LP.

Complementary Slackness

Any matching N with a slack edge is not an optimal solution to the primal LP;

▶ in other words, wtM(N) < 0 (equivalently, M defeats N).

Thus any matching larger than M is unpopular.

▶ So M is a max-size popular matching.

Thus there is a linear time algorithm to find a max-size popular matching.
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Lower bound on |M|

Claim. There is no length 3 augmenting path wrt M in G .

1

1

a b

s t

▶ a− b − s − t is an augmenting path wrt M =⇒ either ab or st blocks M′

(a contradiction to M′’s stability in G ′)

Hence any augmenting path in M ⊕Mmax has length ≥ 5.

▶ Thus |M| ≥ 2
3
· |Mmax|.

▶ There are simple examples where |M| = 2 and |Mmax| = 3.
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Maximum matchings

Applications where the size of the matching is more important than vertex preferences:

▶ matching medical students to hospitals for residency;

▶ matching doctors to hospitals in a pandemic;

▶ assigning accommodation to sailors.

Here {admissible solutions} = {maximum matchings}.

The goal is to find a best maximum matching as per vertex preferences.

▶ How about a maximum matching with the minimum number of blocking edges?

▶ Finding such a matching is NP-hard [Biro, Manlove, and Mittal, 2010].

▶ How about a maximum matching that is popular?
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Maximum matchings and popularity

It can be the case that no maximum matching is popular.
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How about a maximum matching M that is popular among maximum matchings?

▶ So M is a maximum matching.

▶ Furthermore, M ≻ N or M ∼ N for all maximum matchings N.

Does such a “popular maximum matching” always exist in G?

▶ Furthermore, is it easy to find one?
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More colorful graphs

Suppose we use n colors, where |A| = n. Call the resulting graph G∗.

▶ Every edge ab in G has n parallel copies in G∗: ab, ab, . . . , ab, . . . , ab, ab.

ba . . .

For any vertex on the left:

red ≻ blue ≻ · · · ≻ green ≻ · · ·magenta ≻ cyan.

For any vertex on the right:

cyan ≻ magenta ≻ · · · ≻ green ≻ · · · ≻ blue ≻ red .

Within any color class, every vertex maintains its original preference order ≻.
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More colorful graphs

———————————————————————————————

An extension of our algorithm

▶ Construct the colorful graph G∗ = (A ∪ B,E∗).

▶ Run Gale-Shapley algorithm in G∗ to compute M∗.

▶ Return the corresponding matching M in G .

———————————————————————————————

▶ Claim 1. M is a maximum matching in G .

▶ Claim 2. M ≻ N or M ∼ N for every maximum matching N in G .

Claims 1 and 2 ⇒ M is a popular maximum matching.

▶ Moreover, such a matching can be computed easily.
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The LP method

Recall the following edge weight function wtM in G . For any edge ab:

wtM(ab) = votea(b,M(a)) + voteb(a,M(b)).

Here votev (u, u
′) =


1 if v prefers u to u′

−1 if v prefers u′ to u

0 otherwise.

So wtM(e) ∈ {0,±2} for any edge e.

▶ Let M be a maximum matching in G .

▶ Observation. wtM(N) ≤ 0 for all maximum matchings N

⇒ M is a popular maximum matching in G .
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The LP method

LP for max-weight maximum matching in G :

max
∑
e

wtM(e) · xe

∑
e∈δ(u)

xe ≤ 1 ∀u ∈ A ∪ B

∑
a∈A

∑
e∈δ(a)

xe = k and xe ≥ 0 ∀e ∈ E .

Here k is the size of a maximum matching in G .

Optimal value of this LP is at most 0 ⇒ wtM(N) ≤ 0 for all maximum matchings N

⇒ M is a popular maximum matching in G .
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The dual LP

Dual LP

min k · z +
∑
u

αu

αa + αb + z ≥ wtM(ab) ∀ ab ∈ E

αu ≥ 0 ∀ u ∈ A ∪ B.

Our goal is to show that the optimal value of the dual LP is at most 0.

▶ Thus our goal is to show a dual feasible solution (α⃗, z) such that

k · z +
∑
u

αu = 0.

▶ Recall the colorful graph G∗:

▶ let color 0, color 1, . . ., color n − 1 denote the n colors (here n = |A|).
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A partition of the vertex set A ∪ B

For 0 ≤ i ≤ n − 1, let Ai = {a ∈ A : a is matched along a color i edge in M∗}.

For 0 ≤ i ≤ n − 1, let Bi = {b ∈ B : b is matched along a color i edge in M∗}.

Bn−1

Bn−2

B1

B0

An−2

A1

A0

An−1

Unmatched vertices of A are in An−1 and unmatched vertices of B are in B0.
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A partition of the vertex set A ∪ B

Bn−1

Bn−2

B1

B0

An−2

A1

A0

An−1

The following properties hold due to the stability of M∗ in G∗:

(1) For any i , the matching M restricted to Ai ∪ Bi is stable.

(2) For any edge ab where a ∈ Ai+1 and b ∈ Bi : wtM(ab) = −2.

(3) G has no edge in Ai × Bj where i ≥ j + 2.

(4) There is no augmenting path with respect to M.
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A dual certificate

Property (4) implies that M is a maximum matching in G .

For 0 ≤ i ≤ n − 1:

▶ a ∈ Ai ⇒ set αa = 2(n − 1)− 2i ;

▶ b ∈ Bi ⇒ set αb = 2i .

▶ so αu = 0 for any u ∈ An−1 ∪ B0.

Set z = −2(n − 1).

αa + αb + z = 2(n − 1)− 2i + 2i−2(n − 1) = 0 for each ab ∈ M.

(because a ∈ Ai and b ∈ Bi for some i ∈ {0, . . . , n − 1})

▶ Hence k · z +
∑

u αu =
∑

ab∈M(αa + αb + z) = 0.

(since αu = 0 for unmatched u)

Properties (1)-(3) allow us to prove the dual-feasibility of α⃗.

▶ This means the optimal value of the dual LP is at most 0.
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Popular maximum matchings

Interestingly, every popular maximum matching occurs as a stable matching in
the colorful graph G∗.

▶ So popular maximum matchings are very well-structured.

Max-size popular matchings

b0

a2 b2

b1
a1

a0

2 2

1 1

1 1

33 11

2 2

There are two max-size popular matchings here: purple and green.

▶ Only the green matching occurs as a stable matching in the red/blue graph G ′.
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Optimal solutions and popularity

Similar to popular maximum matchings, we can define popular optimal matchings.

Popular optimal matchings

▶ Suppose there is a utility function f : E → Q.

▶ It is only max-utility matchings that are relevant.

These have applications in allocation problems in humanitarian organizations.

▶ We want an allocation of resources to beneficiaries that has maximum impact.

Does there exist a max-utility matching that is popular among max-utility matchings?

▶ If so, is it easy to find one?

▶ The answer to both questions is “yes”.
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Characterizing max-utility matchings

LP for max-utility matching in G = (A ∪ B,E )

max
∑
e

f (e) · xe

∑
e∈δ(u)

xe ≤ 1 ∀u ∈ A ∪ B

xe ≥ 0 ∀e ∈ E .

The polytope of max-utility matchings is a face of the matching polytope.

Thus M is a max-utility matching ⇐⇒ M ⊆ E0 for some E0 ⊆ E and

▶ M matches all vertices in C for some C ⊆ A ∪ B.

We want a C -perfect matching M in G0 = (A ∪ B,E0) such that:

▶ M ≻ N or M ∼ N for all C -perfect matchings N.
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Popular C -perfect matchings

This problem can be reduced to the stable matching problem in a colorful graph G†
0 .

▶ The colors of any edge ab in G†
0 depend on whether a ∈ C and b ∈ C .

▶ For any ab in E0, there is always one green copy ab.

▶ Every ab in E0 where b ∈ C has |C ∩ B| more copies: ab, ab, . . ..

▶ Every ab in E0 where a ∈ C has |C ∩ A| more copies: ab, . . . , ab.

For any vertex in A:

red ≻ blue ≻ · · · ≻ green ≻ magenta ≻ · · · ≻ cyan.

For any vertex in B:

cyan ≻ · · · ≻ magenta ≻ green ≻ · · · ≻ blue ≻ red .

Within any color class, every vertex maintains its original preference order ≻.

The Gale-Shapley algorithm in G†
0 solves the popular C -perfect matching problem.
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Thank you! Any questions?
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