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The input

A bipartite graph where every vertex has a strict ranking of its neighbors.

We seek a matching that pairs up vertices as happily as possible.

How do we formalize such a pairing?

▶ Every agent a should be paired to the best possible job b such that

b is willing to be matched to a.
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Stability

The following property should hold for any agent/job v in our matching M:

▶ every neighbor ranked better than M(v) is matched to a neighbor better
than v .

▶ The red matching satisfies this property; not the blue matching.

▶ The edge between the two middle vertices blocks the blue matching.

▶ A matching with no blocking edge is a stable matching.
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Stable matchings

Stability is a very natural notion of “good matching”.

The Gale-Shapley algorithm: agents propose and jobs dispose — this is a
simple and clean algorithm.
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As we saw, the above instance has a stable matching {sb} of size 1.

▶ So the size of a stable matching might be only half the size of a maximum
matching.

▶ This is the “price of stability”.
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Beyond stability

This motivates relaxing stability to a more collective or “democratic” notion.

Every vertex v has a ranking over all the possible matchings in G :

▶ M ≻v N if M(v) is better than N(v) in v ’s ranking;

▶ M ≺v N if M(v) is worse than N(v) in v ’s ranking;

▶ M ∼v N if M(v) = N(v).

Any pair of matchings can be compared as follows:

▶ hold a head-to-head election between these two matchings.

▶ vertices are voters in this election.

▶ count the number of votes won by each matching.

▶ the matching with smaller number of votes loses this election.
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The ⪰ and ≻ operators

Given two matchings M,N, we write M ⪰ N if

|{v ∈ A ∪ B : M(v) ≻v N(v)}|︸ ︷︷ ︸
# of votes for M

≥ |{v ∈ A ∪ B : N(v) ≻v M(v)}|︸ ︷︷ ︸
# of votes for N

and M ≻ N if the inequality is strict (M defeats N).

A matching M that does not lose any election is a popular matching.
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Max-size popular matching

Every stable matching is popular [Gardenfors, 1975].

▶ Every stable matching is a min-size popular matching.

In the instance below {ab, st} is a max-size popular matching.
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Our goal now is to find the matching {ab, st} here.

▶ We know that running the Gale-Shapley algorithm finds {sb}.

In order to find {ab, st}, a should get a second chance to propose to b.

▶ However b will again reject a.
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A new instance G ′

Idea. b should prefer a’s second proposal to s’s first proposal.

A new graph G ′ where every edge uv in G is replaced by uv and uv in G ′:

▶ that is, by two parallel edges: one red and the other blue.

The corresponding graph G ′ is:

s

a b

t

▶ Red edges correspond to first-time proposals.

▶ Blue edges correspond to second-time proposals.
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A new instance G ′

The graph G ′ with preferences is:
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▶ Every agent prefers any red edge to any blue edge.

▶ Every job prefers any blue edge to any red edge.

The matching {ab, st} is stable here.

▶ Ignoring colors, this is the desired matching {ab, st}.
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Stable matchings in G ′

———————————————————————————————

Our algorithm in G = (A ∪ B,E )

▶ Construct the red/blue graph G ′ = (A ∪ B,E ′).

▶ Run Gale-Shapley algorithm in G ′ to compute M ′.

▶ Return the corresponding matching M in G .

———————————————————————————————

Claim. M is popular matching in G .

▶ Furthermore, M is more popular than any larger matching.

Thus M is a max-size popular matching in G .
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Max-size popular matchings

b0

a2 b2

b1
a1

a0

2 2

1 1

1 1

33 11

2 2

There are two max-size popular matchings here: purple and green.

▶ Only the green matching occurs as a stable matching in the red/blue
graph G ′.

▶ The purple matching cannot be realized as a stable matching in G ′.

Hence not every max-size popular matching occurs as a stable matching in G ′.
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Dominant matchings

Any stable matching in the red/blue graph G ′ has an interesting property:

▶ M is a popular matching that is more popular than all larger matchings.

Def. Call a popular matching that defeats all larger matchings dominant.

Dominant matchings in G ≡ Stable matchings in the red/blue graph G ′.
[Cseh and K, 2018]

▶ Given e ∈ E : is there a popular matching in G = (A ∪ B,E) with e?
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Popularity with a forced edge

Forced edge e

1. Check if there is a stable matching in G with edge e.

2. Check if there is a dominant matching in G with edge e.

3. If the answer in steps 1 and 2 is no then return “no”.

▶ Any popular matching decomposes into a stable part and a dominant part.

▶ This leads to the correctness of the above algorithm.
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Popularity with a forced pair of edges

Given a pair of edges e1, e2 in G :

▶ Is there a popular matching in G with both e1 and e2?

There are polynomial time algorithms to determine if there is a stable matching
with a given set {e1, . . . , ek} of edges [Gusfield and Irving, 1989].

▶ there need not be a stable / dominant matching with both e1 and e2.

Theorem. The above problem is NP-hard [Faenza, K, Powers, Zhang, 2019].

T. Kavitha Popular Matchings and Optimality



Popularity with a forced pair of edges

Given a pair of edges e1, e2 in G :

▶ Is there a popular matching in G with both e1 and e2?

There are polynomial time algorithms to determine if there is a stable matching
with a given set {e1, . . . , ek} of edges [Gusfield and Irving, 1989].

▶ there need not be a stable / dominant matching with both e1 and e2.

Theorem. The above problem is NP-hard [Faenza, K, Powers, Zhang, 2019].

T. Kavitha Popular Matchings and Optimality



The easy subclasses

Finding a max-size (similarly, min-size) popular matching in G is easy.
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Matchings

Popular

Max−size

popular matchings

Min−size

popular matchings

Algorithmic question: Is there any popular matching in G that is neither a
max-size nor a min-size popular matching?
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The easy subclasses

Finding a max-size (similarly, min-size) popular matching in G is easy.
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Matchings

Popular

Max−size

popular matchings

Min−size

popular matchings

or not?

Is this empty

It is NP-hard to decide if G admits a popular matching that is neither a
max-size nor a min-size popular matching.
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Min-cost popular matchings

Suppose every edge has a cost.

▶ It is NP-hard to find a min-cost popular matching.

Finding a min-cost stable matching in G is easy.

▶ Efficient combinatorial [Irving, Leather, and Gusfield, 1987] and LP-based
[Vande Vate, 1987; Rothblum, 1992] algorithms.

▶ The stable matching polytope has a linear-size description.

A relaxation of the min-cost popular matching problem:

▶ the min-cost popular mixed matching problem.
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Mixed matchings

A mixed matching is a probability distribution over matchings, i.e.,

Π = {(M0, p0), . . . , (Mk , pk)},

where M0, . . . ,Mk are matchings in G and
∑

i pi = 1 and pi ≥ 0 ∀i .

▶ A mixed matching is a lottery over matchings.

For any two matchings M and N:

let ∆(N,M) = # of votes for N − # of votes for M.

▶ Define ∆(N,Π) =
∑

i pi ·∆(N,Mi ).

Definition. Call a mixed matching Π popular if ∆(N,Π) ≤ 0 ∀ matchings N.
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An interesting example

This instance has only one popular matching S = {a1b1, a2b2}.

M = {a1b2, a2b1} is unpopular; it is defeated by N = {a0b2, a1b1}.

▶ However the mixed matching Π = {(S , 1
2
), (M, 1

2
)} is popular:

▶ observe that ∆(N,Π) = 1
2
·∆(N,S) + 1

2
·∆(N,M) = 1

2
− 1

2
= 0.

Thus a popular mixed matching need not be a probability distribution over
popular matchings.
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The popular fractional matching polytope

In bipartite graphs: a mixed matching ≡ a fractional matching
[Birkhoff-von Neumann theorem].

A fractional matching is a point x⃗ in the matching polytope MG ,
i.e., x⃗ ∈ Rm

≥0 and
∑

e∈δ(u) xe ≤ 1 for all u ∈ A ∪ B.

Let FG = {x⃗ ∈ MG : ∆(N, x⃗) ≤ 0 for all matchings N}

where ∆(N, x⃗) =
∑

u∈A∪B

 ∑
v≺uN(u)

xuv −
∑

v≻uN(u)

xuv


︸ ︷︷ ︸

u’s vote for N(u) vs x⃗u

▶ FG is the popular fractional matching polytope of G .

▶ That is, FG is the convex hull of all popular fractional matchings in G .
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Towards a compact extended formulation for FG

For any x⃗ ∈ MG and e = ab ∈ E :

▶ Let wtx(e) = (a’s vote for b versus x⃗a) + (b’s vote for a versus x⃗b).

So wtx(e) =

 ∑
b′≺ab

xab′ −
∑
b′≻ab

xab′


︸ ︷︷ ︸

a’s vote for b vs x⃗a

+

 ∑
a′≺ba

xa′b −
∑
a′≻ba

xa′b


︸ ︷︷ ︸

b’s vote for a vs x⃗b

.

▶ Similarly, wtx(uu) = −
∑

e∈δ(u)

xe︸ ︷︷ ︸
u’s vote for itself vs x⃗u

for any u ∈ A ∪ B.

Thus ∆(N, x⃗) = wtx(N) for any perfect matching N.

(note that N is augmented with self-loops to make it perfect)

▶ Hence x⃗ is popular ⇐⇒ wtx(N) ≤ 0 for all perfect matchings N.
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LP for max-weight perfect matching

max
∑
e

wtx(e) · ye

∑
e∈δ(u)∪{uu}

ye = 1 ∀u ∈ A ∪ B

ye ≥ 0 ∀e ∈ E ∪ {self-loops}.

x⃗ is popular ⇐⇒ opt = 0.

The above LP allows us to test if the fractional matching x⃗ is popular or not.

▶ But we want to describe the polytope of all popular fractional matchings.

So we also have to add the constraints
∑

e∈δ(u)∪{uu} xe = 1 ∀u and xe ≥ 0 ∀e.

▶ Then the objective function becomes quadratic in variables xe and ye .
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LP for max-weight perfect matching

So let us consider the dual LP for max-weight perfect matching.

Dual LP

min
∑
u

αu

αa + αb ≥ wtx(ab) ∀ ab ∈ E

αu ≥ wtx(uu) ∀ u ∈ A ∪ B.

x⃗ is popular ⇐⇒ ∃ dual feasible α⃗ with
∑

u αu = 0 (dual certificate for x⃗).

Let us add the constraints
∑

e∈δ(u)∪{uu} xe = 1 ∀u and xe ≥ 0 ∀e to this LP.

▶ So this will be an LP in variables xe ’s and αu’s.

▶ The set of optimal solutions (x⃗ , α⃗) is an extension of our polytope FG .
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The popular fractional matching polytope FG

A compact extended formulation

αa + αb ≥ wtx(ab) ∀ ab ∈ E

αu ≥ wtx(uu) ∀ u ∈ A ∪ B∑
e∈δ(u)∪{uu}

xe = 1 ∀ u ∈ A ∪ B

xe ≥ 0 ∀ e ∈ E ∪ {self-loops}∑
u∈A∪B

αu = 0.

We can optimize over the above polytope (call it F ′
G ) in polynomial time.

Thus we can find a min-cost popular mixed matching in polynomial time.

▶ A drawback of generalizing to mixed matchings is that the solution has
become more complex to describe and difficult to implement.
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The polytope F ′
G

The LP whose set of optimal solutions is F ′
G has an unusual property:

▶ It is self-dual.

▶ So xab > 0 =⇒ αa + αb = wtx(ab).
(by complementary slackness)

Suppose G admits a perfect stable matching. Let |A ∪ B| = n.

▶ Then every popular matching in G has a dual certificate in {±1}n.

▶ We show that F ′
G (and thus FG ) is integral in this special case.

[Huang and K, 2021]

Our method is inspired by the proof of integrality of the formulation of the
stable matching polytope [Teo and Sethuraman, 1998].
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Integrality of FG in the special case

Let x⃗ ∈ FG . Then (x⃗ , α⃗) ∈ F ′
G for some α⃗ ∈ [−1, 1]n.

x⃗u = (xuv1 , . . . , xuvk ) is u’s allocation in x⃗ , for every u ∈ A ∪ B.

v1 vkx⃗u:

1

xuv1 xuvk

So v1, . . . , vk are the neighbors of u such that xuvi > 0 for i = 1, . . . , k.

▶ For a ∈ A: arrange the entries of x⃗a in decreasing order of a’s preference.

▶ For b ∈ B: arrange the entries of x⃗b in increasing order of b’s preference.

▶ There is some αu ∈ [−1, 1] for each u ∈ A ∪ B. How do we interpret αu?
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Reordering the array x⃗a

We will use a’s α-value as follows.

1

x⃗a:

(1− αa)/2 (1 + αa)/2

Call the initial (1− αa)/2 fraction of x⃗a the blue sub-array of x⃗a.

Call the remaining (1 + αa)/2 fraction of x⃗a the red sub-array of x⃗a.

Swap the blue and red sub-arrays to form a reordered array x⃗ ′
a.
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Reordering the array x⃗a

Thus x⃗a ⇝ x⃗ ′
a by this swap.

x⃗a

x⃗ ′a

(1− αa)/2

(1− αa)/2

The order within the blue sub-array (similarly, the red sub-array) is preserved.
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Reordering the array x⃗b

We do an analogous transformation for x⃗b ⇝ x⃗ ′
b for any b ∈ B.

The initial (1 + αb)/2 fraction of x⃗b will be the blue sub-array of x⃗b.

The latter (1− αb)/2 fraction of x⃗b will be the red sub-array of x⃗b.

x⃗b

x⃗ ′b

(1 + αb)/2

(1 + αb)/2

Swap the blue and red sub-arrays to form a reordered array x⃗ ′
b.
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The table T

Form a table T whose rows are the reordered arrays.

x⃗ ′a

x⃗ ′b

x⃗ ′c

x⃗ ′u

x⃗ ′v

Sweep a vertical line along the table T decomposing it into columns.

Mi = pairing defined by the ith column.
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The table T

Form a table T whose rows are the reordered arrays.

x⃗ ′a

x⃗ ′u

x⃗ ′v

x⃗ ′c

x⃗ ′b

Sweep a vertical line along the table T decomposing it into columns.

M1 = pairing defined by the first column.
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The table T

Form a table T whose rows are the reordered arrays.

x⃗ ′a

x⃗ ′v

x⃗ ′u

x⃗ ′c

x⃗ ′b

Sweep a vertical line along the table T decomposing it into columns.

M2 = pairing defined by the second column.
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The table T

Form a table T whose rows are the reordered arrays.

x⃗ ′a

x⃗ ′v

x⃗ ′u

x⃗ ′c

x⃗ ′b

Sweep a vertical line along the table T decomposing it into columns.

M3 = pairing defined by the third column.
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The table T

Form a table T whose rows are the reordered arrays.

x⃗ ′a

x⃗ ′v

x⃗ ′u

x⃗ ′c

x⃗ ′b

Sweep a vertical line along the table T decomposing it into columns.

M4 = pairing defined by the fourth column.

T. Kavitha Popular Matchings and Optimality



Popularity of Mi

Thus x⃗ =
∑

i pi ·Mi , where pi is the width of Mi ’s column.

▶ Self-duality of our LP ⇒ each Mi is a matching in G .

We show a dual certificate α⃗i ∈ {±1}n for each Mi .

▶ Mi corresponds to a red cell in x⃗ ′
a (where a ∈ A) ⇒ αi (a) = 1;

▶ Mi corresponds to a red cell in x⃗ ′
b (where b ∈ B) ⇒ αi (b) = −1;

▶ Mi corresponds to a blue cell in x⃗ ′
a (where a ∈ A) ⇒ αi (a) = −1.

▶ Mi corresponds to a blue cell in x⃗ ′
b (where b ∈ B) ⇒ αi (b) = 1.

This vector α⃗i will be a feasible solution to the dual LP.

▶ Moreover,
∑

u∈A∪B αi (u) = 0.

▶ Thus α⃗i is a dual certificate for Mi .
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Integrality of our formulation

Thus we have (x⃗ , α⃗) =
∑

i pi · (Mi , α⃗i ) where:

▶
∑

i pi = 1 and pi ≥ 0∀ i ;

▶ each Mi is a matching;

▶ α⃗i ∈ {±1}n is Mi ’s dual certificate (so Mi is popular).

Hence F ′
G (and thus FG ) is integral.

▶ This is for the special case when G admits a perfect stable matching.

So we know how to formulate the popular matching polytope of G in this
special case.
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Half-integrality of the polytope FG in the general case

Corresponding to G = (A ∪ B,E), let us build the following graph H:

A0

B1

B0

A1

Every vertex u ∈ A ∪ B has two copies u0 and u1 in H.

H is made up of 2 copies of G along with the “self-loop” edges u0u1 ∀u.

▶ H admits a perfect stable matching.

▶ So FH is integral.
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Half-integrality of the polytope FG in the general case

We can define natural maps f : FG → FH and h : FH → FG :

▶ f will copy e’s x-value on e0 and e1: xe0 = xe1 = xe ;

▶ h will be a “halving map”: xe = (xe0 + xe1)/2.

▶ so h ◦ f (x⃗) = x⃗ for any x⃗ ∈ PG .

Integrality of FH =⇒ f (x⃗) = {(Mi , pi ) : i = 1, . . . , k} for popular matchings
M1, . . . ,Mk in H.

▶ So x⃗ = h ◦ f (x⃗) = {(h(Mi ), pi ) : i = 1, . . . , k}.

Each h(Mi ) will be a popular half-integral matching in G .

▶ Thus x⃗ is a convex combination of popular half-integral matchings.

▶ So the popular fractional matching polytope FG is half-integral.

▶ Hence there is always a min-cost popular mixed matching
Π = {(M0,

1
2
), (M1,

1
2
)}.
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▶ Hence there is always a min-cost popular mixed matching
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1
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1
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The popular matching polytope

Let PG be the popular matching polytope of G .

▶ The extension complexity of PG is 2
Ω
(

m
log m

)
, where |E | = m.

[Faenza and K, 2022]

Can we relax popular to “approximately popular” for the sake of tractability?

▶ M is popular =⇒ no matching wins more votes than M.

Definition. Call a matching M quasi-popular if no matching wins more than
twice as many votes as M.

▶ Can a min-cost quasi-popular matching be efficiently computed?

▶ No, we show it is NP-hard to compute a min-cost quasi-popular matching.
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Quasi-popular matchings

The min-cost popular / quasi-popular matching problems are NP-hard to
approximate up to any factor.

▶ A Bicriteria Approximation. Can we efficiently find a quasi-popular
matching of cost at most that of a min-cost popular matching?

▶ Interestingly, the answer is yes.
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Our technique

▶ The polytopes PG and QG have near-exponential extension complexity.

▶ We show an integral polytope C sandwiched between PG and QG such
that C has a compact extended formulation.

▶ Optimizing over C leads to the efficient bicriteria algorithm.
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Our technique

▶ The polytopes PG and QG have near-exponential extension complexity.

▶ We show an integral polytope C sandwiched between PG and QG such
that C has a compact extended formulation.

▶ Optimizing over C leads to the efficient bicriteria algorithm.
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The popular matching polytope in a special case

Special case:

▶ G has a perfect stable matching =⇒ FG is integral.

From general case to special case:

▶ Assume for simplicity that |A| = |B|.
▶ Our idea: augment G with some new edges so that the resulting graph

G∗ has a perfect stable matching.

▶ Pair up unstable vertices appropriately; add a new edge between each pair.

So the popular matching polytope of G∗ has a compact extended formulation.
(by [Huang and K, 2021])
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The popular matching polytope in a special case

Special case:

▶ G has a perfect stable matching =⇒ FG is integral.

From general case to special case:

▶ Assume for simplicity that |A| = |B|.
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▶ Pair up unstable vertices appropriately; add a new edge between each pair.

So the popular matching polytope of G∗ has a compact extended formulation.
(by [Huang and K, 2021])
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The sandwiched integral polytope

Every popular matching in G can be extended to a perfect popular matching in
G∗ using these new edges.

Every popular matching in G∗, when restricted to edges of G , is quasi-popular
in G .

G∗ has a perfect stable matching, so FG∗ = popular matching polytope of G∗.

The compact extended formulation of FG∗ is an extension of an integral
polytope C where: PG ⊆ C ⊆ QG

.
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The sandwiched integral polytope

Every popular matching in G can be extended to a perfect popular matching in
G∗ using these new edges.

Every popular matching in G∗, when restricted to edges of G , is quasi-popular
in G .

G∗ has a perfect stable matching, so FG∗ = popular matching polytope of G∗.

The compact extended formulation of FG∗ is an extension of an integral
polytope C where: PG ⊆ C ⊆ QG .

T. Kavitha Popular Matchings and Optimality



Another relaxation of popularity

Suppose N is a “very unpopular” matching.

▶ Let us not give N the power to block other matchings.

▶ That is, we waive the constraint ∆(N, x⃗) ≤ 0 in the popular matching
polytope formulation to get a more relaxed formulation.

We seek a relaxation that admits a compact formulation.

▶ Then we can efficiently optimize over this polytope.

How do we define “very unpopular” matchings?
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Another relaxation of popularity

Call a matching S supporting if ∃ a popular mixed matching Π whose support
contains S .

▶ So ∃ popular Π = {(M0, p0), . . . , (Mk , pk)} such that S = Mi for some i .

A non-supporting matching cannot form a popular mixture even with the help
of other matchings.

▶ A matching that is not supporting will be considered “very unpopular”.

Call a matching M fairly popular if ∆(S ,M) ≤ 0 ∀ supporting matchings S .

▶ Though M need not be popular, any matching that defeats M is
uninteresting wrt popularity.
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Fairly popular matchings

Can a min-cost fairly popular matching be computed in polynomial time?

▶ Interestingly, the answer is yes.

The following statements are equivalent.

▶ S is a supporting matching.

▶ No popular mixed matching defeats S .

▶ S matches all stable vertices and S ⊆ Ep where Ep is the set of popular
fractional edges in G .

The set Ep is the set of popular edges in the graph H (this is two copies of G).
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Fairly popular matchings

Can a min-cost fairly popular matching be computed in polynomial time?

▶ Interestingly, the answer is yes.

The following statements are equivalent.

▶ S is a supporting matching.

▶ No popular mixed matching defeats S .

▶ S matches all stable vertices and S ⊆ Ep where Ep is the set of popular
fractional edges in G .

The set Ep is the set of popular edges in the graph H (this is two copies of G).
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Fairly popular matchings

This simple characterization of supporting matchings allows us to show:

▶ M is fairly popular ⇐⇒ M can be realized as a stable matching in a
certain colorful multigraph.

▶ The min-cost stable matching algorithm in this multigraph finds a
min-cost fairly popular matching in G in polynomial time.

▶ The fairly popular matching polytope admits a compact extended
formulation as the stable matching polytope of this colorful multigraph.
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A further relaxation

Call a matching M pseudo-popular if ∆(P,M) = 0 ∀ popular matchings P.

▶ So M is undefeated by all popular matchings.

▶ What is the complexity of deciding if a given matching M is
pseudo-popular?

▶ This is a coNP-hard problem.

By contrast, it is easy to decide if a given matching M is undefeated by all
popular mixed matchings.

▶ Such an M is a supporting matching.

(by our characterization of supporting matchings)

▶ So M has to match all stable vertices and M ⊆ Ep.

T. Kavitha Popular Matchings and Optimality



A further relaxation

Call a matching M pseudo-popular if ∆(P,M) = 0 ∀ popular matchings P.

▶ So M is undefeated by all popular matchings.

▶ What is the complexity of deciding if a given matching M is
pseudo-popular?

▶ This is a coNP-hard problem.

By contrast, it is easy to decide if a given matching M is undefeated by all
popular mixed matchings.

▶ Such an M is a supporting matching.

(by our characterization of supporting matchings)

▶ So M has to match all stable vertices and M ⊆ Ep.

T. Kavitha Popular Matchings and Optimality



References

——————————————————————————————-
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